Antioxidant administration prevents memory impairment in an animal model of maple syrup urine disease.
نویسندگان
چکیده
Maple syrup urine disease (MSUD) is an autosomal recessive metabolic disorder resulting from deficiency of branched-chain α-keto acid dehydrogenase complex leading to branched chain amino acids (BCAA) leucine, isoleucine, and valine accumulation as well as their corresponding transaminated branched-chain α-keto acids. MSUD patients present neurological dysfunction and cognitive impairment. Here, we investigated whether acute and chronic administration of a BCAA pool causes impairment of acquisition and retention of avoidance memory in young rats. We have used two administration protocols. Acute administration consisted of three subcutaneous administrations of the BCAA pool (15.8 μL/g body weight at 1-h intervals) containing 190 mmol/L leucine, 59 mmol/L isoleucine, and 69 mmol/L valine or saline solution (0.85% NaCl; control group) in 30 days old Wistar rats. Chronic administration consisted of two subcutaneous administrations of BCAA pool for 21 days in 7 days old Wistar rats. N-acetylcysteine (NAC; 20 mg/kg) and deferoxamine (DFX; 20 mg/kg) co administration influence on behavioral parameters after chronic BCAA administration was also investigated. BCAA administration induced long-term memory impairment in the inhibitory avoidance and CMIA (continuous multiple-trials step-down inhibitory avoidance) tasks whereas with no alterations in CMIA retention memory. Inhibitory avoidance alterations were prevented by NAC and DFX. BCAA administration did not impair the neuropsychiatric state, muscle tone and strength, and autonomous function evaluated with the SHIRPA (SmithKline/Harwell/ImperialCollege/RoyalHospital/Phenotype Assessment) protocol. Taken together, our results indicate that alterations of motor activity or emotionality probably did not contribute to memory impairment after BCAA administration and NAC and DFX effects suggest that cognition impairment after BCAA administration may be caused by oxidative brain damage.
منابع مشابه
A Classic Case of Maple Syrup Urine Disease and a Novel Mutation in the BCKDHA Gene
Background: Maple syrup urine disease (MSUD) is an inherited branched-chain amino acid metabolic disorder caused by the deficiency in the branched-chain alpha-keto acid dehydrogenase (BCKD) complex. In MSUD, elevation of the branched-chain amino acids, such as alpha-keto acid and alpha-hydroxy acid, occurs due to the BCKDC gene deficiency, appearing in the blood, urine, and cerebrospinal fluid,...
متن کاملSelective Screening of Phenylketonuria, Tyrosinemia and Maple Syrup Urine Disease in Southern Iran
Inborn errors of amino-acids metabolism and other inherited Mendeliandisorders are common in the MiddleEast.The number of diagnosed inborn errors of amino acid metabolism is growing constantly on account of and availability and improved of analytical techniques. The aim of this work was to determine a rough estimate of the incidence rates of phenylketonuria (PKU), tyrosinemia, and maple syrup ...
متن کاملMaple Syrup Urine Disease Induced Grand Mal Seizures: A Case Report
Background Maple Syrup Urine Disease (MSUD) is a rare autosomal recessive metabolic error, characterized by Branched Chain α-Keto-acid Dehydrogenase Complex (BCKDC) deficiency. Mutations in 3 genes can lead to abnormal metabolism and accumulation of leucine, isoleucine, valine and corresponding keto-acids. MSUD affects 1 in 185,000 infants globally. Seizure is a common presentation among neonat...
متن کاملMaple Syrup Urine Disease
Alternative Names MSUD Branched-Chain Ketoaciduria Branched-Chain Alpha-Keto Acid Dehydrogenase Deficiency BCKD Deficiency Keto Acid Decarboxylase Deficiency Maple Syrup Urine Disease, Classic Maple Syrup Urine Disease, Intermediate Maple Syrup Urine Disease, Intermittent Maple Syrup Urine Disease, Thiamine-Responsive Maple Syrup Urine Disease, E3-Deficient, with Lactic Acidosis Maple Syrup Uri...
متن کاملMaple syrup urine disease
Maple syrup urine disease (MSUD) is an autosomal recessive condition with an incidence of approximately 1 in 150 000 live births with a higher incidence amongst children from consanguineous relationships [1]. It is caused by an enzymatic deficiency with reduction in oxidative decarboxylation of branched-chain amino acids (BCAA) (leucine, isoleucine and valine) resulting in elevated levels and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Behavioural brain research
دوره 231 1 شماره
صفحات -
تاریخ انتشار 2012